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1 Introduction

The front tracking method was �rst introduced by Richtmyer for the numer-
ical solution of hyperbolic equations. The solution of hyperbolic equations
contains discontinuities such as contact discontinuities and shocks. The for-
mer exist even in linear equations when the initial condition is discontinuous.
The latter are associated with the nonlinearity of the hyperbolic system.
Finite di�erence and �nite volume methods give a satisfactory numerical ap-
proximation and convergence rate in the region where the solution is smooth.
However they fail to deliver physically correct solutions at discontinuities,
especially when the equation of state across the discontinuity is sharply dif-
ferent. By separating the smooth regions at the discontinuity through an
interface, the front tracking method overcomes this numerical diÆculty by
applying �nite di�erence solvers to each smooth subdomain while treating
the discontinuity with special care and propagating the front using the exact
solution of the Riemann problem.

In the last few years, progress has been made to extend the front tracking
method to three dimensional space and to address the issue of conservation
in the coupling between the front solution and the interior solver. There has
also been an e�ort to combine tracking and adaptive mesh re�nement in
the computation of the hyperbolic equations. In this paper, we will review
the work done in this �eld. We will describe the addition of the grid-based
tracking and hybrid methods, the use of dynamic 
ux and control volume
for conservative tracking and the combination of the adaptive computational
code Overture and the front tracking code FronTier.

A major thrust of the front tracking program has been its application to
scienti�c problems. In this paper, we report on one of the most successful
applications of the front tracking method to 
uid physics. The clear sep-
aration of di�erent 
uid components in the computation of gravity driven
Rayleigh-Taylor instability has maintained correct buoyancy driven accel-
eration throughout the numerical simulation, thus giving a dimensionless
acceleration consistent with that observed in experiments.
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Sections 2, 3, and 4 will discuss recent developments of the front tracking
method, its simpli�cation and extension to three dimensional space, imple-
mentation of the conservative tracking scheme and the merging of FronTier
with the Overture code, while Section 5 will discuss a successful application
of the front tracking method. A short conclusion is given in Section 6.

2 Geometrical Simpli�cation

The classical front tracking method in which the front geometry is indepen-
dent of the rectangular grid of the computational domain has encountered
an increased diÆculty in its extension to the three dimensional space. The
main reason for this fact is: (1) the determination and correction of the in-
terface topology requires the information of the full interface and (2) the
interface could evolve into a con�guration with high complexity, even within
one time step and with small probability. This has limited the robustness of
the numerical algorithm and increased the complexity of the code in order
to handle cases which may rarely occur (but when they happen, they termi-
nate the computation). Such complexity already occured in two dimensional
front tracking, but became a signi�cant obstacle when the front tracking is
extended to three dimensions.

To resolve this problem, a new method, called the grid-based tracking
method [5], was introduced to augment the classical or the grid-free track-
ing method. This method makes a closer link between the interface and the
rectangular grid of the computational domain. The interface is grouped into
segments each �t into a mesh block in the rectangular grid. With an arti�-
cially imposed constraint that the interface is allowed to intercept each mesh
block edge only once, the topology of the interface within each mesh block
is greatly simpli�ed. In two dimensions, there are only three isomorphically
distinct cases and in three dimensions, only 14 isomorphically distinct cases.
The construction of the block interface is the same as in the marching cube
method by Lorensen and Cline [8], but the reconstruction is dynamic. Since
the level set method [9] also borrows the marching cube based graphical tools
to show the interface, the simplicity as well as the resolution level of the in-
terface is the same for both methods. Figures 1 and 2 show the comparison of
the interface in the classical (or grid-free) tracking method and the grid-based
tracking method.

While gaining robustness, the grid-based tracking method loses resolution.
The quality of its elements is also decreased due to the constraint imposed
by the rectangular grid blocks. In two dimension, these interface elements
are bonds and in three dimension, they are triangles. To combine the merits
of the two tracking method, we also propose a hybrid method. The hybrid
algorithm can vary according to the application needs. One method is the fail-
ure backing-up algorithm in which the grid based method is used only when
the grid-free method fails to resolve the topological changes. In that case, the
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Fig. 1. The the grid-free interface in the simulation of Rayleigh-Taylor instability

g

Fig. 2. The reconstruction of the grid-based interface in the simulation of Rayleigh-
Taylor instability

whole interface will be reconstructed through the grid-based method. Another
one is the locally grid-based method. In such a method when a topological
bifurcation is detected, a rectangular box of varying size is constructed which
totally con�nes the region of the interface tangling and only interface pieces
inside the box will undergo a grid-based reconstruction.

The grid-based reconstruction of the interface mesh consists of four major
steps: (1) the propagation of the interface, (2) intersection of the interface
with grid edges, (3) removal of the unphysical or topologically incorrect in-
tersections, and (4) the block-wise reconstruction of the interface. The details
of this algorithm are presented in [5]. Figure 3 shows the evolution of a 3-D
Rayleigh-Taylor unstable interface in a front tracking simulation.
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Fig. 3. Evolution of the 
uid interface in the simulation of Rayleigh-Taylor insta-
bility with randomly perturbed initial interface

3 Conservation

The second important issue we have addressed in the front tracking method
as well as in other tracking methods (such as the level set tracking method),
is the conservation property of the numerical scheme. To separate di�erent
material components and prevent the cross-interface interpolation (such in-
terpolation is the source of numerical di�usion and dispersion), the front
tracking method used extrapolated states from the interface to create the
numerical stencil to update the near-interface grid points [7]. This algorithm
was later adopted to use in the level set tracking and was called the ghost-
cell method [3]. For example, to use a �ve-point MUSCL or a Godunov-type
scheme to update the states at two grid points j and j + 1 between which
there is an interface, we calculate the 
ux at the right cell edge of point j
through Fj+1=2(u

n
j�1; u

n
j ; �unj+1; �unj+2), and the 
ux at the left cell edge of point

j+1 through Fj+1=2( �unj�1; �u
n
j ; u

n
j+1; u

n
j+2), where �unj+1, �unj+2 are ghost states

extrapolated from the left side of the interface, and �unj�1, �u
n
j are the ghost

states extrapolated from the right side of the interface. Since the two 
uxes
calculated at the right cell edge of j and the left cell edge of j + 1 cannot
cancel with each other, the numerical scheme is not conservative. The lack of
conservation occurs in the same way in the level set tracking, the di�erence
between the two methods lying in the algorithm of extrapolation.

Our new numerical scheme [6] is based on the concept of dynamic 
ux
de�ned as:

fdJ (u) = f(uJ)� suJ ; J = L; R

where f(u) is the stationary 
ux and s is the front speed. When the dynamic

ux is applied at a dynamical cell edge (the interface), with complete sep-
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Fig. 4. The 1-D time space cells. The left is without merging and the right is with
merging with neighboring cells.

Fig. 5. The 2-D time space cells for the computation of conservative front tracking

aration of 
uid states on each side of the interface, we can still have 
ux
cancellation so long as the state variables uL and uR are the solution of
the Riemann problem and thus satisfy the Rankine-Hugoniot condition. The
implementation of the new scheme is based on the construction of the space-
time control volume. Figures 4 and 5 show the control volumes for one and
two space dimensions.

The conservation law for a control volume with a dynamic boundary can
be written as

(u+ � u
�

)nt +

dX

j=1

(Fj(u+)� F (u
�

))nxj) = 0

where nt and nxj are the time and space components of the unit vector at
the boundary of the space-time control volume. This condition is satis�ed
at any space-time control volume boundary, should it be discontinuous or
not. In particular, we use the space-time interface as one side of the control
volume so that cross-interface interpolation can be avoided. The accuracy of
the scheme is then dependent on the algorithm to evaluate u+ and u

�

on
each side of the control volume.
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4 Adaptivity

Front tracking is most e�ective in separating the 
uid components, especially
those with di�erent equation of states. Tracking of shock waves is more easily
replaced by other methods such as capturing with the use of limiters. The
interaction of di�erent waves can be easily solved in one dimension. In two di-
mensions, although the shock polar solution allows tracking of both contacts
and shocks, there are cases in which the 2D required Riemann problem does
not have a simple solution. In three dimensions, the problem of wave inter-
actions in gas dynamics is yet to be studied. Another reason for not tracking
shocks is that such discontinuities are compressive. With converging char-
acteristics, numerical errors tend to be annihilated at the discontinuity and
di�usion is self-adjusted. Capturing methods with the application of limiters
provide a satisfactory solution to such nonlinear discontinuities.

Unlike the contact surface which separates materials with di�erent equa-
tion of states, a shock wave does not have to be prescribed initially. Even if
the initial condition does not contain a shock discontinuity, one can be gen-
erated in the interior of the computational domain after a �nite time. The
resolution required by these localized but captured waves is typically dis-
tributed very nonuniformly in space. Adaptive mesh re�nement [1] provides
a very e�ective and eÆcient computational platform to deal with this prob-
lem. A combination of the front tracking and adaptive mesh re�nement will
compliment each other and become a very powerful tool to study problems
in 
uid physics with both prescribed material boundary and interior wave
dynamics.

The adaptive mesh re�nement code we use is adopted from the Lawrence
Livermore National Laboratory. The algorithm used in this code follows
Berger. The concentration of dynamical changes are detected by the gradient
of the physical quantities such as the density and pressure. Grid patches at
di�erent levels of re�nement are created according to the user prescribed in-
put parameters. Since the material interface is always discontinuous and has
the largest gradient, it will always be included in patches of the �nest level.
Therefore we embed the tracked interface only in the most re�ned level of
the adaptive grid. Figure 6 shows the adaptive patches with a tracked front
in the �nest level of the grid.

5 A Scienti�c Application

One of the successful applications of the front tracking method is its appli-
cation to the gravity driven 
uid interface instability, the Rayleigh-Taylor
instability. Over the last decade, scientists have been trying to reproduce
through computation the experiments done by Read and Youngs on the RT
instability with randomly perturbed 
uid interface. Read and Youngs �rst
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Fig. 6. The adaptively re�ned patches and the tracked front in a combined
Overture-FronTier initialization.

observed that there exists a dimensionless acceleration rate of the mixing
layer

� =
h

Agt2

where h, A, g and t are the height of the mixing layer, the Atwood number
of the two 
uids, gravity and time respectively. The measurement by Read
[10] on the acceleration rate � of the mixing layer on the bubble side gives
its values at about 0:06 � 0:077. However, most of the numerical simula-
tion with untracked 
uid interface gives the acceleration rate in the range
of 0:015 � 0:04. The sharp contrast between experiment and computation
stimulated intense debate among scientists as to what could be wrong with
the experiment or the simulation.

To answer this question, we have performed a comparative study of the
RT instability using both an untracked numerical code and the front tracking
method. Our front tracking simulation showed an [4] acceleration rate lying
within the range of experimental variation. The average value of the � in
the front tracking simulation is about 0:07 while the untracked code (using
the TVD scheme) gives much smaller acceleration rate of about 0:04, which
agrees with most of the simulations by other computational scientists using
untracked code. The front tracking value for � has been reanalyzed using
lower than leading order asymptotics, yielding a corrected � = 0:0625 [2]. A
careful study of the 
uid density pro�le revealed a sharp contrast between the
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tracked and untracked simulations. The former maintains a clear boundary
of the two 
uids with a sharp density discontinuity across the 
uid interface,
while the latter has signi�cant smearing-out of the 
uid from one side to the
other.

Fig. 7. The buoyancy acceleration for undi�used and di�used bubbles, see text for
explanation.

An analysis of the net buoyancy (acceleration) acting on the bubbles (and
spikes) revealed that the di�usive layer between the two 
uids can signi�-
cantly retard the relative motion between the two 
uids. The reduced mixing
rate due to unphysical numerical di�usion can be understood from Figure 7.
The left frame represents an immiscible bubble of radius r. The central and
the right frame assume that this bubble is smeared out numerically to a ra-
dius R while the total mass inside the sphere of radius R is conserved. The
buoyancy forces

f1 = f2 =
4�r3

3
(�H � �L)g (1)

for the bubbles in frames (a) and (c) are the same. However, due to the
di�erence between the mass in the nondi�used bubble (a) and the di�used
bubble (c), the two acceleration rates

a1 =
�H � �L

�L
g > a2 =

�H � �L

�L +
�
R3

r3 � 1
�
�H

g (2)

are di�erent. In the di�used 
uids, the buoyancy force is distributed to a
larger amount of mass, thus reducing the acceleration of the bubble.

We then computed an e�ective Atwood number A(t) as a function of time
for the untracked simulations. This is determined from the highest and lowest
densities in a horizontal slice, with the resulting time and space dependent
Atwood number averaged over heights in the upper third of the mixing zone
at a �xed time to get an Atwood number dependent on time alone. The time
dependence of A(t) in the FronTier simulation is caused purely by (small)
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compressibility e�ects. For the mass di�usive TVD simulation, the initial
density contrast,A(t = 0) = 0:5, is almost completely washed out; the earliest
time displayed shows A(t = 2) � 0:15. As new pure (heavy and light) 
uid is
injected into the mixing region, the e�ective Atwood number increases, but
it is still reduced to about A � 0:3 on a time averaged basis, or nearly a 50%
reduction relative to its initial value.
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Fig. 8. Bubble height vs. Aeffgt
2 in tracked and untracked numerical simulation

To compensate for the time dependent Atwood number A(t), we de�ne an
e�ective alpha, �e� � h=2

R R
A(s)gdsdt. Speci�cally, � or �e� is de�ned here

as the slope of the straight line joining the beginning and end of the h(t) curve
in Figure 8. This de�nition, although somewhat arbitrary, is conventional,
and thus allows comparison to the results of others. We observe an improved
comparison between FronTier and TVD and between TVD and experiment.
On this basis, we can state that the di�usive buoyancy renormalization of
� is capable of resolving existing discrepancies among simulations, among
di�usive and non-di�usive simulations and with theory.

6 Conclusion

We conclude that front tracking method can overcome its complexity in han-
dling the interface geometry with the help of the rectangular grid. Using the
grid edges as the basis for the interface, we can reduce most of the geometri-
cal calculation to a single coordinate and limit the topological con�guration
of the interface to small number of isomorphically distinct cases. While com-
bining with the classical grid-free tracking, we can also have the 
exibility
of enhancing the quality of the interface meshing and maintaining higher
resolution of the interface for certain physical problems.

Conservation of the front tracking method can be achieved through con-
struction of space-time control volumes and application of the dynamic 
ux



10 Authors Suppressed Due to Excessive Length

at its moving boundary. In combining the front tracking method and the
adaptive mesh re�nement, we will create a powerful tool for the solution of
hyperbolic conservation laws with contact surfaces separating di�erent ma-
terials and eÆciently resolve the internal wave interactions.

Front tracking method is shown to be able to deliver solutions with sharp
contrast to the untracked numerical methods in comparison with experi-
ments. The prediction of the correct acceleration rate in the simulation of
RT instability with randomly perturbed interface provides a good example
of its success.
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